Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response.

نویسندگان

  • Jonathan V Rocheleau
  • W Steven Head
  • David W Piston
چکیده

Glucose-stimulated insulin secretion is a multistep process dependent on beta-cell metabolic flux. Our previous studies on intact pancreatic islets used two-photon NAD(P)H imaging as a quantitative measure of the combined redox signal from NADH and NADPH (referred to as NAD(P)H). These studies showed that pyruvate, a non-secretagogue, enters beta-cells and causes a transient rise in NAD(P)H. To further characterize the metabolic fate of pyruvate, we have now developed one-photon flavoprotein microscopy as a simultaneous assay of lipoamide dehydrogenase (LipDH) autofluorescence. This flavoprotein is in direct equilibrium with mitochondrial NADH. Hence, a comparison of LipDH and NAD(P)H autofluorescence provides a method to distinguish the production of NADH, NADPH, or both. Using this method, the glucose dose response is consistent with an increase in both NADH and NADPH. In contrast, the transient rise in NAD(P)H observed with pyruvate stimulation is not accompanied by a significant change in LipDH, which indicates that pyruvate raises cellular NADPH without raising NADH. In comparison, methyl pyruvate stimulated a robust NADH and NADPH response. These data provide new evidence that exogenous pyruvate does not induce a significant rise in mitochondrial NADH. This inability likely results in its failure to produce the ATP necessary for stimulated secretion of insulin. Overall, these data are consistent with either a restricted pyruvate dehydrogenase-dependent metabolism or a buffering of the NADH response by other metabolic mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment

Subpopulations of cells that escape anti-cancer treatment can cause relapse in cancer patients. Therefore, measurements of cellular-level tumor heterogeneity could enable improved anti-cancer treatment regimens. Cancer exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD. The optical redox ratio (fluorescence intensity of NAD(P)H divide...

متن کامل

Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells.

Two-photon excitation microscopy was used to image and quantify NAD(P)H autofluorescence from intact pancreatic islets under glucose stimulation. At maximal glucose stimulation, the rise in whole-cell NAD(P)H levels was estimated to be approximately 30 microM. However, because glucose-stimulated insulin secretion involves both glycolytic and Kreb's cycle metabolism, islets were cultured on extr...

متن کامل

Functional Imaging of Mitochondria in Saponin-permeabilized Mice Muscle Fibers

Confocal laser-scanning and digital fluorescence imaging microscopy were used to quantify the mitochondrial autofluorescence changes of NAD(P)H and flavoproteins in unfixed saponin-permeabilized myofibers from mice quadriceps muscle tissue. Addition of mitochondrial substrates, ADP, or cyanide led to redox state changes of the mitochondrial NAD system. These changes were detected by ratio imagi...

متن کامل

Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets.

The pancreatic islet is a functional microorgan involved in maintaining normoglycemia through regulated secretion of insulin and other hormones. Extracellular glucose stimulates insulin secretion from islet beta cells through an increase in redox state, which can be measured by NAD(P)H autofluorescence. Glucose concentrations over approximately 7 mM generate synchronous oscillations in beta cel...

متن کامل

Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets.

Exposure of pancreatic islets of Langerhans to physiological concentrations of glucose leads to secretion of insulin in an oscillatory pattern. The oscillations in insulin secretion are associated with oscillations in cytosolic Ca(2+) concentration ([Ca(2+)](c)). Evidence suggests that the oscillations in [Ca(2+)](c) and secretion are driven by oscillations in metabolism, but it is unclear whet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 30  شماره 

صفحات  -

تاریخ انتشار 2004